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Abstract

The lattice Boltzmann method (LBM) is extended to include the effects of interfacial tension and its dependence on
temperature and is applied to the problem of buoyancy-driven flow in a non-isothermal two-phase system. No a priori
assumptions are made regarding the shape and dynamic roles of the interface. The behavior of interface is obtained as
part of the solution of the lattice Boltzmann equations. A parametric study of the effects of thermally induced density
change, buoyancy, surface tension variation with temperature on interface dynamics, flow regimes and heat transfer is
presented.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The Rayleigh–Benard system, in which a fluid is confined between two horizontal parallel plates and
maintained at different temperatures, is one of the most studied non-equilibrium hydrodynamic systems.

Most prior work has focused on the case of a single fluid that fills the entire space between the plates [1–
4]. However, there are systems of interest in which the fluid consists of two or more layers of immiscible
liquids. Each fluid layer shares a common boundary with another fluid layer. Some previous numerical
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studies [5–7] have been applied to the two-fluid Rayleigh–Benard problem but the shape of the interface
was assumed to be rigid, flat and horizontal. Zhang and Alexander [8] have addressed the simpler compu-
tational problem of flows with curved deformable surfaces in liquid-bridge related problems. Cliffe and Ta-
vener [9] employed an orthogonal mapping technique to solve the location of the deformable interface.
However, to avoid the complex issues surrounding moving contact lines and time-dependent interfaces,
they limited their studies to steady solutions.

Over the last decade, the lattice Boltzmannmethod (LBM) has become an established numerical approach
in computer fluid dynamics (CFD), because of its capability to simulate flow in multiphase fluids. The under-
lying concept of the LBM is to incorporate the essential physics of the problem into a simplified kinetic equa-
tion such that the correct macroscopic behavior of the fluid is recovered. In contrast to traditional CFD
methods which solve macroscopic equations, the LBM simulates fluid flow based on microscopic model
or mesoscopic kinetic equations. This intrinsic feature is attractive to those who wish to incorporate micro-
scopic or mesoscopic features and processes that are either not used in, or are difficult to incorporate, in tra-
ditional CFD simulation models. In particular, phase segregation and interfacial dynamics, which are
essential in multiphase fluids are difficult (but not impossible) to simulate by traditional approaches, can
be modeled in LBM by incorporation of molecular interactions. The sharp interface between different immis-
cible phases can be automatically maintained without any artificial treatment [10]. This feature is especially
attractive when there is a need for modeling flow in so-called micro- or even nano-fluidic devices.

For simulating two-phase fluid flows, four LB methods have been used to date: the chromodynamic
model proposed by Gunstensen et al. [11] and Grunau et al. [12], the pseudopotential model [13,14], the
free-energy model proposed by Swift et al. [15,16] and the index fluid method developed by He [17]. All
have their origins in kinetic theory. In some situations, the chromodynamic, pseudopotential and the
free-energy model can lead to unphysical behavior, such as the spurious current around interfaces [18], ther-
modynamic inconsistencies [15] and lack of Galilean invariance [17,19]. The method recently developed by
He and Chen [17] employs an index function to track different phases and the interface between them using
a mean-field approximation for intermolecular attraction and Enskog�s exclusion-volume effect for short
range strong repulsion. When the molecular attraction is strong enough, the index function automatically
separates into two different phases.

In most multiphase LBE models to date, only mass and momentum conservation is implemented. The
macroscopic equations of these models correspond to the Navier–Stokes equation with an equation of state
and a constant temperature. However, it is important and sometimes critical to have the capability of sim-
ulating thermal effects simultaneously with the fluid flow. Since the LBE method has several attractive fea-
tures that make it a strong candidate for the simulation of complex fluids with multiple phases and phase
transitions, it is necessary to develop the capability of simultaneously solving the energy, momentum and
mass balance equations using LBM.

Unfortunately, the simulation of thermal multiphase systems by the LBE method has not yet achieved
the same success as that of isothermal flows. Theoretically, a LBE model with energy conservation can be
constructed [20–22] to yield a temperature evolution equation at the macroscopic level. However, when
inter-particle forces are included, as in the multiphase models, energy conservation is further complicated
by the contribution to the internal energy due to interactions between components. For this reason, con-
structing a non-ideal-gas LBE model with energy conservation is a challenge.

Rather than use a scheme for the energy balance that is based entirely on the LBM, we avoid the diffi-
culties inherent in LBM and use a hybrid model that involves the LBM for the momentum and mass con-
servation equations and continuum model for the energy conservation. In other words, a two-phase LBM
based on the double population model is combined with a scalar energy equation. Such an approach has
been used by Filipova and Hanel [23] for instant to simulate combustion. Using the hybrid lattice Boltz-
mann finite-difference simulation, two-fluid Rayleigh–Benard convection is investigated. No a priori
assumptions about the shape and dynamical behavior of the interface are made.
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2. Two-phase model

The lattice Boltzmann method models fluid flow by simulating the behavior of the one-particle dis-
tribution function. The original Boltzmann equation describes the behavior of the one-particle distribu-
tion function, f(r,e, t), which is defined as the density of the number of particles at point r at time t
with a �microscopic� velocity e. If this function is known, the local macroscopic values of the fluid, such
as density, momentum, temperature can be obtained by evaluating the moments of f. The other ther-
modynamic properties can then be calculated from the density and temperature through the equation of
state.

To improve the stability of the simulation, the two-phase Boltzmann method proposed by He and Chen
[17] was based on two distribution functions f(r,e, t) and g(r,e, t). In this scheme, f(r,e, t) is an index distri-
bution function that is used to track the density field, while g(r,e, t) is the pressure distribution function
which is needed to calculate both pressure and macroscopic velocity. The model is based on the Bhatnagar,
Gross and Krook (BGK) approximation [24]
otf þ e � rrf ¼ � f � f eq

s
þ ðFþGÞ � ðe� uÞ

/RT 0

f eq; ð1Þ

otg þ e � rrg ¼ � g � geq

s
þ ðe� uÞ � CðuÞðFþGÞ � ðCðuÞ � Cð0ÞÞrwðqÞ½ �. ð2Þ
The second distribution function g(r,e, t) is defined by
gðr; e; tÞ ¼ f ðr; e; tÞRT 0 þ wðqÞCð0Þ ð3Þ

and C(u) is a function of the macroscopic velocity u,
CðuÞ ¼ 1

ð2pRT 0ÞD=2
exp �ðe� uÞ2

2RT 0

" #
; ð4Þ
where D ¼ 1; 2 or 3 depending on the space dimension.
Here F and G are the effective molecular interaction and gravity force, respectively, R is the gas constant,

T0 is the reference temperature, in this paper (the average temperature T0 = (Tmax � Tmin)/2), q is the mac-
roscopic fluid density, s is the relaxation time and w(q) is a density-dependent function to be specified later.
The equilibrium distribution feq(r,e, t) satisfies the local Maxwell–Boltzmann equation [25,26]:
f eq ¼ /

ð2pRT 0ÞD=2
exp �ðe� uÞ2

2RT 0

" #
¼ / � CðuÞ. ð5Þ
From Eq. (3), equilibrium distribution geq(r,e, t) can be expressed in terms of feq(r,e, t) and C(u)
geq ¼ f eqRT 0 þ wðqÞCð0Þ ¼ qRT 0CðuÞ þ wðqÞCð0Þ. ð6Þ

The effective molecular interaction force F can be expressed as the sum of two parts, a long range attractive
force and short range repulsive one. These are expressed through a mean-field approximation and exclu-
sion-volume effect that are taken to be
F ¼ qrV� Bq2RT 0vr lnðq2vÞ ¼ �rðBq2RT 0v� Aq2Þ þ jqrr2q ¼ �rwþ Fs. ð7Þ
Here Fs = jq$$2q represents the force associated with surface tension, the parameter j determines the
strength of surface tension, w = Bq2RT0v � Aq2 is related to the pressure by w(q) = p � qRT0 and the pres-
sure satisfies the following equation of state:
p ¼ qRT 0ð1þ BqvÞ � Aq2; ð8Þ
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where B is related to the mass and effective diameter of a molecule, v is the density-dependent collision
probability for molecules, A and j are constant and related to the intermolecular pair-wise potential uattr.

The term $w in Eq. (7) depends on the equation of state, plays a key role in phase separation. In our
study, the equation of state for Carnahan–Starling fluid is chosen. If setting v ¼ 1�bq=8

ð1�bq=4Þ3, the Carnahan–
Starling equation of state can be rewritten in the form
p ¼ qRT 0

1þ ðbq=4Þ þ ðbq=4Þ2 � ðbq=4Þ3

ð1� bq=4Þ3
� aq2. ð9Þ
If the density gradient is small, the intermolecular attraction potential V can be expressed as
V ¼ �2Aq� jr2q. ð10Þ

Note that, this restricts the application of the model to fluids with similar densities situations such as gas–
liquid interfaces cannot be tackled using this approximation.

The distribution function is discretized by representing the physical space with a discrete set of lattice
points. The simplest sets of points coincide with the points on a regular lattice. The microscopic velocities
associated with a given lattice point are represented by a finite number of velocity vectors to neighboring
lattice points. In our study, a two-dimensional nine-velocity (D2Q9) model is employed. Here the physical
space is represented by a square lattice. The corresponding velocity space at each point has eight velocity
vectors, ei, i = 1,8, that radiate out from the lattice point toward each of the nearest and next nearest neigh-
bor points. The first velocity vector is zero vector at the lattice point, i.e., e0 = 0. Thus the velocity space is
discretized to 9-speeds as below:
ei ¼
ð0; 0Þ; a ¼ 0;

ðsin ap
2
;� cos ap

2
Þc; a ¼ 1–4;

ðsin ap
2
þ cos ap

2
; sin ap

2
� cos ap

2
Þc; a ¼ 5–8;

8><
>: ð11Þ
where c2 ¼ 3c2s ¼ 3RT 0, cs is the so-called ‘‘LBM sound speed’’.
To solve the equations using an explicit scheme, a second-order accurate strategy is adopted to integrate

the Boltzmann equations (1) and (2). This requires the following variable transformations:
~f ¼ f þ ðe� uÞ � rwð/Þ
2RT 0

CðuÞdt; ð12Þ

~g ¼ g � 1
2
ðe� uÞ � CðuÞðFs þGÞ � ðCðuÞ � Cð0ÞÞrwðqÞ½ �dt; ð13Þ
where dt is the time step.
When substituted into Eqs. (1) and (2), the discretized distribution functions ~f aðr; tÞ and ~gaðr; tÞ with

microscopic velocity ea at a node site r + eadt at time t + dt, yield
~f aðrþ eadt; t þ dtÞ ¼ ~f aðr; tÞ þ
f eq
a ðr; tÞ � ~f aðr; tÞ

s=dt
� ð2s� dtÞ

2s
ðea � uÞ � rwð/Þ

RT 0

CaðuÞdt; ð14Þ

~gaðrþ eadt; t þ dtÞ ¼ ~gaðr; tÞ þ
geqa ðr; tÞ � ~gaðr; tÞ

s=dt
þ ð2s� dtÞ

2s
ðea � uÞ

� CaðuÞðFs þGÞ � CaðuÞ � Cað0Þð ÞrwðqÞ½ �dt. ð15Þ
The discrete equilibrium distribution function, is expressed in terms of Mach number u/cs
f eq
a ¼ wa/ 1þ ea � u

c2s
þ ðea � uÞ2

2c4s
� u2

2c2s

" #
¼ / � CaðuÞ; ð16Þ
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geqa ¼ wa p þ qRT 0

ea � u
c2s

þ ðea � uÞ2

2c4s
� u2

2c2s

 !" #
¼ waðp � qRT 0Þ þ CaðuÞqRT 0; ð17Þ

CaðuÞ ¼ wa 1þ ea � u
c2s

þ ðea � uÞ2

2c4s
� u2

2c2s

" #
; ð18Þ
where wa is the integral weight.
w0;w1;w2;w3;w4;w5;w6;w7;w8½ � ¼ 4

9
;
1

9
;
1

9
;
1

9
;
1

9
;
1

36
;
1

36
;
1

36
;
1

36

� �
. ð19Þ
Finally, the hydrodynamic variables, the density of the index fluid /, the pressure p and the macroscopic
velocity u, can be calculated as kinetic moments of ~f aðr; tÞ and ~gaðr; tÞ:
/ ¼
X8
a¼0

~f a; ð20Þ

p ¼
X8
a¼0

~ga �
1

2
u � rwðqÞdt; ð21Þ

u ¼ 1

qc2s

X8
a¼0

ea~ga þ
dt
2q

ðFs þGÞ. ð22Þ
The real fluid density and viscosity can be calculated from the index function /
qð/Þ ¼ ql þ
/� /l

/h � /l

ðqh � qlÞ; ð23Þ

mð/Þ ¼ ml þ
/� /l

/h � /l

ðmh � mlÞ. ð24Þ
Here ql and qh are the densities of the light and heavy fluids, respectively; ml and mh are viscosities of light
and heavy fluids, respectively; /l and /h are the minimum and maximum values of the index function.

Assuming that the Boussinesq approximation holds for each fluid, all the fluid properties are considered
as constant, except the body force term in Eqs. (2) and (13), where the fluid density is assumed
q = qavg[1 � bi(T � T0)]. The effective additional thermal buoyancy force can be written as
Gtb ¼ qavg½1� biðT � T 0Þ�g; ð25Þ
where T0 is set to be the average value of the hot wall and cold wall temperatures, T 0 ¼ 1
2
ðT h þ T cÞ.

An additional body force term arises due to the phase buoyancy force related to the density jump across
a phase boundary caused by different phases can be given as
Gpb ¼ ðq� qavgÞg; ð26Þ
where qavg is the average density of two equilibrium phases.
3. Incorporation with thermodynamics

Most of the published LBM multiphase studies have been restricted to isothermal systems [13,15–17,
19,20]. Consensus has yet to be reached as to how to self-consistently incorporate all thermodynamic
quantities (internal kinetic and potential energy, free-energy, entropy, etc.). The most obvious difficulty
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is tracking the energy evolution while conserving total energy. This means, that the kinetic model is re-
quired not only to recover the correct mass and momentum equations, but also the energy equation.

In what follows, we introduce a model that couples a multiphase LBM with the macroscopic energy
equation. The thermal multiphase fluid dynamics is separated to two parts, fluid dynamics and thermal
dynamics. Momentum and mass balance is determined by isothermal multiphase LBM-scheme while the
energy balance is governed by a scalar energy conservation equation and modeled by differential-scheme.

The energy transport in macroscopic level satisfies
otðqeÞ þ r � ðqueÞ ¼ �pr � uþP : ru�r � q; ð27Þ
where e represents the specific internal energy, q represents the heat flux vector, the first term on the right-
hand side is the work done by pressure, and the second term on the right-hand is the dissipation term in
which P represents the stress tensor.

For a multiphase system, we further split P in Eq. (27) into two parts, P = P1 + P2, one represents the
viscous stress tensor P1, the other an effective interfacial stress tensor P2. They are assumed to have the
form
P1 ¼ qmðruþ urÞ; ð28Þ

P2 ¼ jqr2qþ j
2
jrqj2

� �
I� jrqrq. ð29Þ
Note that, the form of P2 is similar in form to the so-called Korteweg stress in an isotropic two-phase
immiscible fluid system [27].

The internal energy can be expressed as
e ¼ cvT ; ð30Þ

where cv is the specific heat at constant volume and T is the fluid temperature.

The heat flux q is assumed to follow Fourier�s law:
q ¼ �krT ; ð31Þ

where k is the thermal conductivity of fluid.

Assuming thermal conductivity k and specific heat cv are constant, Eq. (27) can be regrouped and the
following system of equations and boundary conditions is solved:
cv otðqT Þ þ r � ðqTuÞ½ � ¼ �pr � uþ kr2T þ qmðruþ urÞ

: ruþ jqr2qþ j
2
jrqj2

h i
r � u� jrqrq : ru.

ð32Þ
Eq. (32) is solved simultaneously with the following equations for the distribution functions ~f a and ~ga:
~f aðrþ eadt; t þ dtÞ ¼ ~f aðr; tÞ þ
f eq
a ðr; tÞ � ~f aðr; tÞ

s=dt
� ð2s� dtÞ

2s
ðea � uÞ � rwð/Þ

RT 0

CaðuÞdt; ð33Þ

~gaðrþ eadt; t þ dtÞ ¼ ~gaðr; tÞ þ
geqa ðr; tÞ � ~gaðr; tÞ

s=dt
þ ð2s� dtÞ

2s
ðea � uÞ

� CaðuÞðFs þGÞ � CaðuÞ � Cað0Þð ÞrwðqÞ½ �dt; ð34Þ
and macroscopic variables
/ ¼
X8
a¼0

~f a; ð35Þ
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p ¼
X8
a¼0

~ga �
1

2
u � rwðqÞdt; ð36Þ

u ¼ 1

qc2s

X8
a¼0

ea~ga þ
dt
2q

ðFs þGÞ. ð37Þ
Non-slip (bounce-back) boundary conditions are employed at the top and bottom walls and periodic
boundary conditions are used to in the horizontal direction in this paper.

Note that, even though each of the fluid phases is incompressible, the density q in Eq. (32) (which rep-
resents a two-phase system) cannot be treated as a constant because there is a sharp density gradient at the
interface between the two phases. Furthermore, the density gradient contributes to the interfacial stresses
that are manifested as a surface tension.

Accordingly, the velocity, pressure, density and temperature fields are solved at each time step as follows:

(a) Set an initial velocity u, density q, index function /, pressure p and temperature T at each site in the
domain field.

(b) Calculate the buoyancy forces Gtb and Gpb using (25) and (26), respectively.
(c) Based on the values of u, q, /, p and G, calculate equilibrium distributions f eq

a ðr; tÞ; geqa ðr; tÞ with (16)–
(18) at each site; complete the collision and propagation by (33), (34) to obtain distribution functions
~f aðr; tÞ, ~gaðr; tÞ at the new time step.

(d) Calculate /, p, u and q with (35)–(37) and (23) at the new time step.
(e) Solve the new temperature field using the energy equation (32).
(f) Return to step (b) and repeat until either a steady state is obtained or, for time-dependent flows, until

the desired time has elapsed.

Using the numerical procedures outlined above, the hybrid thermal LBM couples the LB momentum
equations with the macroscopic energy equation through the introduction of a macroscopic Boussinesq
buoyancy force in the momentum equation.
4. Numerical simulation of Rayleigh–Benard convection of a two-layer fluid system

The Rayleigh–Benard convection has been studied extensively and, thus, serves as an excellent bench-
mark for our LBM simulation. We consider two horizontal layers of immiscible fluid, confined between
Fig. 1. Schematic of the two-fluid system.
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rigid isothermal plates kept at different temperatures. As shown in Fig. 1, two rigid parallel isothermal
plates at constant temperature bound a system of two immiscible fluids that share an interface. The Carte-
sian coordinates are such that x is horizontal and the gravity vector is antiparallel to its y-axis.
Fig. 2. Flow and thermal fields for Ra1 = 8.0 · 104, Ca1 = 4.6 · 10�4 and Ma1 = 0: (a) e1 = 0.0667, (b) e1 = 0.10, (c) e1 = 0.15 and
(d) e1 = 0.20.
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Each fluid is characterized by its thickness hi, thermal conductivity ki, specific heat cvi, volumetric mass
density qi, kinematic viscosity mi and thermal expansion coefficient bi. The subscript i = 1 refers to lower
layer fluid I, i = 2 to the upper layer fluid II. Unless otherwise stated, the ratio of physical properties of
the fluid II to fluid I have been fixed as qr = 0.33, br = 2.0, kr = 0.7, cvr = 0.4, mr = 1.0. Initially, a two-layer
system of immiscible fluids at equal depth, h1 = h2 = 0.5H, fills the cavity with width W and height H. The
aspect ratio of the enclosed cavity W/H was selected as 2:1 and the simulation was carried out on an 81 by
41 grid. We also recalculated selected cases with a 161 by 81 grid. The results are close. For the case pre-
sented in Fig. 2(b), for example, the maximum velocity magnitude difference is only 2.1%. The location of
the maximum and minimum velocities was less than 1.0% error, indicating the grid is sufficiently well
resolved.

The important non-dimensional parameters of this problem are the Rayleigh number Ra1 ¼
gb1DTHPr1=m

2
1, Capillary number Ca1 ¼ q1m1uref=r ¼ q1m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gb1HDT

p
=r, the Marangoni number Ma1 =

(or/oT)DTH/(q1m1a1 ) = cDTH/(q1m1a1) and e1 = b1DT, where DT = Th � Tc is the temperature difference
between the hot and cold walls, and the Prandtl number is Pr1 = m1/a1, where a = k/(qcv) is the thermal
diffusivity.

In the first case, we fixed Ra1 = 8.0 · 104, Ca1 = 4.6 · 10�4 and neglected surface tension forces arising
from a temperature dependence of j in Eq. (7), i.e., (Ma1 = 0), which is designed to demonstrate how the
flow, thermal characteristics and deformation of the interface are altered by the parameter e1.

The flow features of a two-layered convection are captured in Fig. 2. Each layer is occupied by clockwise
and counterclockwise circulating cells and the circulating in the upper layer is little weaker that in the lower
layer.

It is seen, as expected, that the deformation of interface increases as e1 increases, as shown in Fig. 3. In
this plot, deformation rate represents the interface deformation over cavity height, Dh/H. The deformation
rate is less than 3.0% if e1 < 0.10, which is relatively small and could become unappreciable. However, when
e1 takes large value, the interface deformation cannot be neglected. Fig. 4 shows the evolution of fluid con-
vection caused by thermal buoyancy force in case of e1 = 0.26 at some representative dimensionless time,
where we take t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=ðgbDT Þ

p
as the time scale.

The effect of Rayleigh number Ra1 on the interface deformation and heat transfer coefficient is shown in
Fig. 5. In this case, we fixed e1 = 0.15, Ca1 = 4.6 · 10�4 and neglected Marangoni force (Ma1 = 0). In each
case, there are two pairs of counter-rotating convection rolls both in lower layer and in upper layer. As
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Fig. 3. Interface deformation vs. e1 Ra1 = 8.0 · 104,Ca1 = 4.6 · 10�4 and Ma1 = 0.
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Rayleigh number increases, the fluid convection become stronger and the isotherms are more distorted.
However, the interface deformation does not appear to be affected by changes in the Rayleigh number. This
can also be observed in Fig. 6.
Fig. 4. Evolution of fluid flow and thermal fields Ra1 = 8.0 · 104, Ca1 = 4.6 · 10�4 and Ma1 = 0, e1 = 0.26: (a) t = 65, (b) t = 130,
(c) t = 200 and (d) t = 720.



Q. Chang, J.I.D. Alexander / Journal of Computational Physics 212 (2006) 473–489 483
As the Rayleigh number is increased, the temperature gradient near the top wall, bottom wall and inter-
face becomes sharper. The heat transfer rate is estimated in terms of the Nusselt number. The local Nusselt
number and the average value are calculated as
Fig. 5. Flow and thermal fields for e1 = 0.15,Ca1 = 4.6 · 10�4 andMa1 = 0: (a)Ra1 = 6.0 · 103, (b)Ra1 = 1.2 · 103, (c)Ra1 = 4.8 · 103

and (d) Ra1 = 8.0 · 104.



0.0

5.0

10.0

15.0

20.0

25.0

0.0E+00 4.0E+04 8.0E+04 1.2E+05 1.6E+05
Ra

D
ef

or
m

at
io

n 
ra

te
 (

%
) 

Fig. 6. Interface deformation vs. Ra e1 = 0.15, Ca1 = 4.6 · 10�4 and Ma1 = 0.

Fig. 7.
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Nu ¼ � H
DT

oT
oy

� �
wall

; ð38Þ

�Nu ¼ 1

W

Z W

0

Nu � dx; ð39Þ
where the temperature gradient oT/oy is calculated using three points formula.
The local and average Nusselt numbers at the top and bottom wall along the x-axis are shown in Fig. 7.

Locally, a double-peak occurs at the region corresponding maximum temperature gradient. The average
Nusselt number is greatly altered by Rayleigh number value. The Nusselt numbers measured at the steady
states are plotted in Fig. 8 as a function of Rayleigh number. The average Nusselt number increases with
the Rayleigh number, as it does for single phase systems [28].
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The effect of Capillary number Ca1 on the interface deformation is illustrated by Fig. 9. Here, we fixed
e1 = 0.15, Ra1 = 8.0 · 104 and neglected the interfacial force due to surface tension variation with temper-
ature (Ma1 = 0). For smaller Ca1 number, the interface deformation increases rapidly as the Ca1 number
increases, until it approaches 3.7%. Subsequently, the interface deformation rate remains constant as the
Ca1 number is increased. Since the maximum deformation is only 3.7%, we conclude that changing Ca
has a negligible effect on the interface deformation.

Finally, we examine the effect of the Marangoni number Ma1 on the interface. We let the surface tension
at the interface vary linearly with temperature. That is, the surface tension depends on temperature as
r ¼ r0 � cDT ; ð40Þ
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Fig. 8. The dependence of average Nusselt number on Rayleigh number e1 = 0.15, Ca1 = 4.6 · 10�4 and Ma1 = 0.
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where r0 is the surface tension at reference temperature T0. The parameter c is the absolute value of the
derivative of the surface tension with respect to temperature, dr/dT.

To determine the relationship between surface tension and parameter j in Eq. (7), we conduct serial sim-
ulations for a static 2D circular bubble. According to the Laplace law, the pressure difference between the
interior and the exterior of a static 2D circular bubble, DP = Pin � Pex, is related to the surface tension r,
through following rule:
DP ¼ r
r
; ð41Þ
where r is the bubble radius. Fig. 10 shows the measurements of DP/j versus 1/r at the density ratio
qr = 0.33. We can fit the results to a linear equation as
DP
j

¼ 0:043
1

r
; ð42Þ
Then the relation between surface tension and parameter j can be written as
r ¼ 0:043j ð43Þ

and
c ¼ dr
dT

¼ 0:043
dj
dT

. ð44Þ
Because, for the problem under consideration, the temperature gradient is nearly perpendicular to the
interface, the magnitude of the component of the temperature gradient along the interface is very small,
even for large e1 values. It is observed that a change in Marangoni number will not bring about any sig-
nificant change in the interface shape. An example is given in Fig. 11. Here, all parameters are set to the
same value as the example given in Fig. 2(c), except for Ma1. Compared with Fig. 2(c), the entire flow
field tends to be excited. The thermocapillary force distorts the two pairs of convection rolls in the upper
layer, and enlarges the center pair of convection rolls in the lower layer and ultimately squeezing the side
pair of convection rolls to a strongly asymmetric vortex in each side. The corresponding temperature
deviation from Fig. 2(c) is also shown in this figure. Fig. 12 depicts the corresponding Nusselt number
along the top and bottom wall. Thermocapillary flow enhances the average Nusselt number slightly, from
4.16 to 4.4.
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Fig. 10. Verification that calculated pressure differences fit the Laplace law.



Fig. 11. Flow and thermal fields for e1 = 0.15, Ca1 = 4.6 · 10�4, Ma1 = 8.6 · 105 and Ra1 = 8.0 · 104.
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5. Conclusions

A thermal lattice Boltzmann model for two-phase fluid flow with a double population distribution func-
tions has been developed. The key point for this scheme is combining a microscale description of the flow
with a macroscopic energy transport equation. At the microscale level, a multiphase lattice Boltzmann
model is adopted to calculate some macroscale variables, such as index function, density, velocity and pres-
sure. The temperature field is simulated by an additional scalar energy transport equation with finite-
difference scheme. The simulation of the 2D Rayleigh–Benard and Marangoni convection in two-layer
system with this model is analyzed. The results indicate that the interface deformation is mainly dependent
on e1, the product of the lower fluid�s thermal expansion coefficient and the sytem�s characteristic temper-
ature difference.

The present algorithm has been tested on the well-known Rayleigh–Benard problem and it appears to
lend itself well to problems involving complicated free surfaces and interface deformations. Because of
the nature of the approximations used to create a two-phase liquid the simulations are valid provided
the density difference between the two fluids is small. The latter restriction was accepted only for conve-
nience and other approaches for dealing with phases with large density differences are available but are
more computationally intensive. The lattice Boltzmann method offers some advantages for problems
involving multiphase fluids and is also readily adapted to complex geometries [29,30]. Thus, it can be
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expected that the LBM will emerge as a popular method for dealing with multiphase flows in complex
geometries.
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